ERRATA

THERMAL RADIATION: AN INTRODUCTION

JOHN R. HOWELL. M. PINAR MENGÜÇ, AND KYLE DAUN CRC-TAYLOR AND FRANCIS (First Printing)

2023
NOTE: The recent update to the International System of Units has changed some values for constants used in Example Problems and Homework. These are updated in the Errata to use the latest SI values. The recently updated SI constant values are noted at the end of this Errata listing.

Also, homework requiring use of an Al interface has been added to the on-line Appendix for the book at https://www.thermalradiation.net/ at the end of the Additional Homework in Section I.

Page Correction

In Examples 2.1 and 2.2, the revised value of C_{1} (see page 429, below) changes the results slightly. In Example 2.1, the first equation results in 2747 $\mathrm{W} /\left(\mathrm{m}^{2} . \mu \mathrm{m} . \mathrm{sr}\right)$, and the final result is 8629 rather than $8627 \mathrm{~W} /\left(\mathrm{m}^{2} \mu \mathrm{~m}\right)$. In Example 2.2, replace the result of 0.256×10^{8} with 0.259×10^{8}.

At end of paragraph preceding Eq. (2.28), replace the parenthetical expression with: (assuming n is independent of wavelength):

Eq. (2.29) should read*: $\lambda_{\max } T=C_{3}=2897.7720 \mu \mathrm{~m} \cdot \mathrm{~K}$

$$
\begin{align*}
& F_{0 \rightarrow \lambda T}=\frac{2 \pi C_{1}}{\sigma T^{4}} \int_{0}^{\lambda} \frac{d \lambda}{\lambda^{5}\left(\frac{C_{2}}{e^{\lambda T}}-1\right)}=\frac{2 \pi C_{1}}{\sigma C_{2}^{4}} \int_{\zeta}^{\infty} \frac{\zeta^{* 3}}{e^{\zeta^{*}}-1} d \zeta^{*} \tag{2.38}\\
& F_{0 \rightarrow \lambda T}=1-\frac{15}{\pi^{4}} \int_{0}^{\zeta} \frac{\zeta^{* 3}}{e^{\zeta^{*}}-1} d \zeta^{*} \tag{2.39}
\end{align*}
$$

Example 2.9: The result should read $=0.083053-0.002134=0.0809$, giving an efficiency of about 8%.

For clarity, reword the paragraph starting with "We start the analysis..." with:
We start the analysis with the radiative intensity $I_{\lambda}(\theta, \phi)$ leaving surface element $d A$ as in Figure 1.18a.. The projected area is formed by taking the area that the energy is leaving and projecting it normal to the direction of the radiation, $d A \cos \theta$.

To analyze the radiative exchange between two finite surfaces, we need to carry out integration over the entire area of each surface. For this, consider radiative energy leaving a small area element $d A_{1}$ and traveling in a nonparticipating medium as in Figure 1.18b. Assume that this energy is incident on a second small area element $d A_{2}$ on finite area A_{2}, at distance S_{12} from $d A_{1}$. The projected areas are formed by taking the area that the energy is passing through and projecting it normal to the direction of the radiation; therefore, $d A_{1} \cos \theta_{1}$ and $d A_{2} \cos \theta_{2}$ are the normal components of the infinitesimal areas along direction S_{12}. The elemental solid angle is centered about the direction of the radiant path and has its origin at $d A$. Using the definition of spectral intensity $I_{\lambda, 1}$ as the rate of energy passing through $d A_{I}$ per unit projected area per unit solid angle and per unit wavelength interval, the energy $d Q_{\lambda, 1}$ from $d A$ passing through $d A_{l}$ in the direction of S_{12} is

In Problem 2.10, the answer should be 0.809 h
In Figure 3.4, change the cosine function to $0.850 \cos (\theta)$. Use this function in the solution of Example 3.3, and round the result to 3 significant figures to give a final result of $32,200 \mathrm{~W} / \mathrm{m}^{2}$.

In the equation at the top of the page, all upper limits in the integrals should be ∞, not N (3 places).

In Example 3.6, all upper limits in the integrals in the first equation should be ∞,
not N (3 places). Also, due to the revised constants*, the final answer should read:

$$
\alpha=0.90 \times 0.32639+0.37832+0.25(1-0.88375)=0.7015 .
$$

In Homework Problem 3.5, the answer to part (a) should be 0.764 .
The answer to HW Problem 3.10 should be 30.4 min .
Example 4.1: Answer for perpendicular compnent should be 0.299 , and reflectivity for unpolarized incident intensity should be 0.251 .

Table 4.2. in the values for Normal Spectral Reflectivity for Aluminum, from Eq. (4.51), the values should be 0.916 and 0.979 instead of 0.883 and 0.970 .

Example 4.4: Replace the third equation with:

$$
\alpha_{n}(T=250 \mathrm{~K})=\frac{\varepsilon_{n}(T=500 \mathrm{~K})}{\sqrt{2}}=\frac{\sqrt{1 / 2} \int_{0}^{\infty} \varepsilon_{\lambda, n}(T=500 \mathrm{~K}) I_{\lambda, b}(500 \mathrm{~K}) d \lambda}{\int_{0}^{\infty} I_{\lambda, b}(500 \mathrm{~K}) d \lambda}
$$

and replace the fourth equation with

$$
\begin{aligned}
\varepsilon_{n}(T=500 \mathrm{~K}) & =0.03487 \sqrt{r_{e, 273}}=0.0348 T \sqrt{r_{e, 273}} \sqrt{\frac{273}{298}} T \\
& =0.0348 \sqrt{10 \times 10^{-6}} \sqrt{\frac{273}{298}} \times 500=0.053
\end{aligned}
$$

Last equation: Replace $q_{\text {sol }}$ with $G_{\text {sol }}$.
In first line of the final paragraph in Example 4.6, replace $15 \mu \mathrm{~m}$ with $1.5 \mu \mathrm{~m}$
Example 4.7: The result of the first equation should be $1150 \mathrm{~W} / \mathrm{m}^{2}$. The result of the second equation should be $68.3 \mathrm{~W} / \mathrm{m}^{2}$. The final result should be $1150-68=$ $1082 \mathrm{~W} / \mathrm{m}^{2}$.

In HW Problem 4.1, the answers should be 0.9797 and 0.9405 .
In HW 4.6, the answers should be $645 \mathrm{~K} ; 0.0329$; 1.31
In HW 4.8, The answers should be: Answer: $\varepsilon_{\lambda, A l}(\lambda=0.484 \mu m)=\underline{0.086}$;
$\varepsilon_{\lambda, \mathrm{Al}}(\lambda=8.06 \mu \mathrm{~m})=\underline{0.014} ; \varepsilon_{\lambda, \mathrm{Ti}}(\lambda=0.484 \mu \mathrm{~m})=\underline{0.678} ; ~ \varepsilon_{\lambda, \mathrm{Ti}}(\lambda=8.06 \mu \mathrm{~m})=\underline{0.043}$.
In HW 4.9, add "...when exposed to the sun." to the problem statement.
In HW 5.4, part b), answer should be 0.02744

230 Replace the last equation with:

$$
t=\frac{\rho_{M} V C\left(1 / \varepsilon_{1}+1 / \varepsilon_{2}-1\right)}{A_{1} \sigma}\left[\frac{1}{4 T_{2}^{3}} \ln \left|\frac{\left(T_{F}+T_{2}\right) /\left(T_{F}-T_{2}\right)}{\left(T_{1}+T_{2}\right) /\left(T_{1}-T_{2}\right)}\right|+\frac{1}{2 T_{2}^{3}}\left(\tan ^{-1} \frac{T_{F}}{T_{2}}-\tan ^{-1} \frac{T_{1}}{T_{2}}\right)\right]
$$

231 In the first paragraph, replace $\mathrm{t}=1.65 \mathrm{~h}$ with 375 h .
The solution to HW 6.2 should be 64.2 W
The speed of light, c_{o}, should read $c_{\mathrm{o}}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
The reduced Planck's constant should read $\hbar=h / 2 \pi=1.054571817 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
The value for the Boltzmann constant should read $k=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
The value for the classical electron radius should read:

$$
2.8179403262(+/-13) \times 10^{-15} \mathrm{~m}
$$

The value for the electron volt should read: $1 \mathrm{eV}=1.602176634 \times 10^{-19} \mathrm{~J}$
429* The value of the radiation constant C_{1} in SI should read

$$
\begin{aligned}
& \mathrm{C}_{1}=0.59552149 \times 10^{8} \mathrm{~W} \cdot \mu \mathrm{~m}^{4} /\left(\mathrm{m}^{2 \cdot} \mathrm{sr}\right) \\
& \mathrm{C}_{1}=0.59552149 \times 10^{-16} \mathrm{~W} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

The value of the Stefan-Boltzmann constant in SI should read

$$
\sigma=5.670374419 \ldots \times 10^{-8}\left(\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

*Most of these changes result from a recent fundamental revision in the International System of Units. See Appendix N in the on-line Appendices at:
http://www.thermalradiation.net/appendix.html
or the video at

http://www.thermalradiation.net/videos.html

